<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:Aptos;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0cm;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;
        mso-fareast-language:EN-US;}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:#0563C1;
        text-decoration:underline;}
span.EmailStyle18
        {mso-style-type:personal-compose;
        font-family:"Calibri",sans-serif;
        color:windowtext;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-size:10.0pt;
        mso-ligatures:none;
        mso-fareast-language:EN-US;}
@page WordSection1
        {size:612.0pt 792.0pt;
        margin:72.0pt 72.0pt 72.0pt 72.0pt;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="SV" link="#0563C1" vlink="#954F72" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoNormal"><span lang="EN-US" style="font-size:14.0pt">Welcome to a Machine Learning Seminar on Thursday, September 26 at 14:15 in Alan Turing<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US"><o:p> </o:p></span></p>
<p class="MsoNormal"><b><span lang="EN-US" style="font-size:16.0pt;color:black">Modelling and generating data via deep probabilistic representations<o:p></o:p></span></b></p>
<p class="MsoNormal"><b><span style="font-size:16.0pt;color:black"><a href="https://www.uu.se/en/contact-and-organisation/staff?query=N13-1742"><span lang="EN-GB">Thomas Schön</span></a></span></b><b><span lang="EN-GB" style="font-size:16.0pt;color:black">,
 Department of Information Technology, Uppsala University<o:p></o:p></span></b></p>
<p class="MsoNormal"><b><span lang="EN-GB" style="font-size:16.0pt;color:black"><o:p> </o:p></span></b></p>
<p class="MsoNormal"><i><span lang="EN-GB">Abstract:</span></i><span lang="EN-GB"> One of the key lessons to take away from contemporary machine learning is that flexible models often offer the best predictive performance. This has implications in many situations.
 In this talk I will try to make this concrete by looking at a few constructions that we are working with. I will start with a (classical) classification task from ECG interpretation and then continue to the more under-researched area of how to formulate and
 solve regression problems using deep learning. There are currently several different approaches used for deep regression and there is still room for innovation. I will illustrate this landscape in general and introduce some of our developments consisting of
 a deep regression method which has a clear probabilistic interpretation. When it comes to generative models I will also share some insights related to diffusion models, in particular related to its use for image restoration. Besides sharing some of our findings
 for this particular problem I will also point out some more general aspects we came to realize in working on this.<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US">Location: <b>Alan Turing,</b> <a href="https://www.ida.liu.se/department/location/search.en.shtml?keyword=alan">
https://www.ida.liu.se/department/location/search.en.shtml?keyword=alan</a><o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US">------------------<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US"> <o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US">The list of future seminars in the series is available at:
</span><a href="http://www.ida.liu.se/research/machinelearning/seminars/" target="_BLANK2"><span lang="EN-US">http://www.ida.liu.se/research/machinelearning/seminars/</span></a><span lang="EN-US"><o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US">You can subscribe to the seminar series' calendar using this ics link:
<a href="https://outlook.office365.com/owa/calendar/4d811ae47ce446f58d11a7c2f50a7ed8@ad.liu.se/0f5253d7bc7841248c71eb4c28eb2d668927992292494627279/calendar.ics" target="_BLANK2">
https://outlook.office365.com/owa/calendar/4d811ae47ce446f58d11a7c2f50a7ed8@ad.liu.se/0f5253d7bc7841248c71eb4c28eb2d668927992292494627279/calendar.ics</a><o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US"> <o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US"><o:p> </o:p></span></p>
</div>
</body>
</html>